Neutrino Scattering Experiments: What do oscillation expermients need?

Proton Driver Physics Study Workshop
Joint WG1 WG2 session
Deborah Harris
Fermilab
October 7, 2004

Acknowledgements & References

- Information taken from:
 - T2K, T.Nakaya, NuINT04 Talk
 - MINOS, N.Tagg, NO-VE, 2003
 - Off-Axis-NOTE-SIM-24, P. Litchfield et al
 - NOvA proposal
 - H. Gallagher, S. Boyd, D. Casper, MINERvA MC authors
- Much of this can be found on this topic at: hep-ex/0410005 hot off the press!

Outline

- > Introduction
 - How to measure probabilities with neutrinos
- $\triangleright v_e$ appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \frac{1}{2} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right) + \dots$$

- $\triangleright v_{\mu}$ disappearance
 - MINOS

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

These are mostly case studies...

Probabilities

$$N_{far} = \phi_{\nu_{\mu}} \sigma_{\nu_{x}} P(\nu_{\mu} \to \nu_{x}) \varepsilon_{x} M_{far} + B_{far}$$

φ=flux, σ= cross section ε=efficiency M=mass

$$P(\nu_{\mu} \to \nu_{x}) = \frac{N_{far} - B_{far}}{\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x} M_{far}}$$

 B_{far} = Backgrounds at far detector, from any flux

$$B_{far} = \sum_{i=u,e} \phi_{v_i}(P) \sigma_{v_i} \varepsilon_{ix} M_{far}$$

NuINT matters for Signal and Background Cross sections, and indirectly for efficiencies!

Probabilities, continued

$$\left(\frac{\delta P}{P}\right)^{2} = \frac{\left(N_{far} + \left(\delta B_{far}\right)^{2}\right)}{\left(\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x} M_{far}\right)^{2}} + \frac{N_{far} - B_{far}}{\left(\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x}\right)^{2}} \left[\delta(\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x})\right]^{2}$$

$$\left(\frac{\delta P}{P}\right)^{2} = \frac{\left(N_{far} + \left(\delta B_{far}\right)^{2}\right)}{\left(\phi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x}M_{far}\right)^{2}} + \frac{\left(N_{far} - B_{far}\right)}{\left(\phi_{\nu_{\mu}}\sigma_{\nu_{x}}\varepsilon_{x}\right)^{2}} \left(\left[\frac{\delta \phi_{\nu_{\mu}}}{\phi_{\nu_{\mu}}}\right]^{2} + \left(\frac{\delta \sigma_{\nu_{x}}}{\sigma_{\nu_{x}}}\right)^{2} + \left(\frac{\delta \varepsilon_{\nu_{x}}}{\varepsilon_{\nu_{x}}}\right)^{2}\right)$$

2 Regimes:

$$N_{\it far} >> B_{\it far}$$
 $N_{\it far} \approx B_{\it far}$

Problem:

Don't always know *a priori* which regime you are in ---depends on Δm^2 ,

---depends on $\sin^2 2\theta_{13}$

Neutrinos from NuMI

 ν_{μ} CC Events/MINOS/2 year Low Medium High 5080 13800 29600

For $4x10^{20}$ protons on target/year

With oscillations about half the $\nu_{\mu}CC$ events in low energy running will not occur—still in high signal statistics regime!

By moving the horns and target, different energy spectra are available using the NuMI beamline.

NUMI Beams Off-Axis:

NuMI beam can produce 1-3 GeV intense beams with well defined energy in a cone around the nominal beam direction

W/o oscillations: 820km, 14mrad: $18.6 \text{k } \nu_{\mu} \text{CC}$, 5.6k NC, $391 \nu_{e} \text{CC}$ (50kton detector, 5 years)

Liquid Scintillator

- Alternating horizontal and vertical scintillator planes
- Passive material: wood
 Oriented Strand Board
 (density .6 .7 g/cm³)
- Sampling: 1/3 rad. length

Electron and Muon Tracks

Signal & Background Events

Near Detector Strategy

$$B_{far} = \sum_{i=\mu,e} \phi_{\nu_i far}(P) \sigma_{\nu_i} \mathcal{E}_{ix} M_{far}$$

Backgrounds come from several sources

$$N_{near} = \sum_{i=\mu,e} \phi_{v_i \, near} \sigma_{v_i} \varepsilon_{ix} M_{near}$$

Build near detector with same &

$$B_{far} = N_{near} \frac{\displaystyle\sum_{i=\mu,e} \phi_{v_{i} \; far}(P) \sigma_{v_{i}} \varepsilon_{ix} M_{far}}{\displaystyle\sum_{i=\mu,e} \phi_{v_{i} \; near} \sigma_{v_{i}} \varepsilon_{ix} M_{near}}$$

Simulations better at predicting ratios absolute levels

$$B_{far} = \sum_{i=\mu,e} N_{near,i} \frac{\phi_{v_i far}}{\phi_{v_i near}} \frac{\sigma_{v_i}}{\sigma_{v_i}} \frac{\varepsilon_{ix}}{\varepsilon_{ix}} \frac{M_{far}}{M_{near}}$$

Near Detector Strategy (cont'd)

$$B_{far} = \int dE_{v} \sum_{i=\mu,e} N_{near,i}(E_{v}) \left(\frac{\phi_{v_{i} far}}{\phi_{v_{i} near}}\right) (E_{v}) \left(\frac{\sigma_{v_{i}}}{\sigma_{v_{i}}}\right) (E_{v}) \left(\frac{\varepsilon_{ix}}{\varepsilon_{ix}}\right) (E_{v}) \frac{M_{far}}{M_{near}}$$

- But ratios don't cancel everything
- Underlying problem: fluxes are different
 - Near detector: line source, far detector: point source
 - But even if that is solved, still $v_{\mu}CC$ oscillations
- All of these terms are functions of energy
 - Uncertainties in energy dependence of cross sections translate into far detector uncertainties...

Measuring $v_u \rightarrow v_e$ at NOvA

Assuming 50kton, 5 years at $4x10^{20}$ POT, $\Delta m^2 = 2.5x10^{-3}$ eV²

Process	Events	QE	RES	СОН	DIS
δσ/σ		20%	40%	100%	20%
Signal ν_e	$ \begin{array}{l} 175 \\ At \\ \sin^2 2\theta_{13} \\ =0.1 \end{array} $	55%	35%	n/i	10%
NC	15.4	0	50%	20%	30%
$\nu_{\mu}CC$	3.6	0	65%	n/i	35%
Beam v_e	19.1	50%	40%	n/i	10%

For large $\sin^2 2\theta_{13}$, statistical=8% For small $\sin^2 2\theta_{13}$ statistical=16%

How well do uncertainties cancel...

• No matter where the ND is, $v_{\mu}CC$ background is very different near to far, because of $v_{\mu} \rightarrow v_{\tau}$ oscillations

Assume Energy Dependence Perfectly known....vary σ levels

Moral of Story: Need Near Detector AND cross section measurements

Once a signal is seen at Far Detector...

- Recall that statistical error is about 8% here (assuming a " $\sin^2 2\Theta_{13}$ " of 0.1!)
- And this is for 0.4MW x 5 years of running

Process	QE	RES	СОН	DIS
δσ/σ now	20%	40%	100%	20%
δσ/σ in 2014 (@PD)	5%/na	5%/10%	5%/20%	5%/10%

Background Prediction at Far Detector:

Current cross section errors

Minerva cross section errors

• Statistical Error is about 15% on background events alone

Cross Section Needs vs "sin² 2Θ₁₃"

Two extremes:

With proton driver And big signal, Post-Minerva errors Will be the same as The statistical error

With proton driver and No signal, post-minerva Errors will be about half The statistical error

SuperKamiokande Performance

Response for single e,µ very well measured (test beam and cosmic rays)

But there are thresholds for detection...

- e; p > 0.6 MeV/c
 m; p > 120 MeV/c
 π; p > 160 MeV/c
- □ K; p > 563 MeV/c
- p; p > 1,070 MeV/c

+ ~50MeV to identify a Cherenkov ring

Energy Reconstruction in Water Cerenkov

5. Neutrino Energy Reconstruction

Assuming CCQE, and μ information only

Which Cross-sections Matter?

Figure courtesy D. Casper

SK sample is mainly non-QE!

How off in energy is non-QE sample?

$E_{\nu}(reconstruct) - E_{\nu}(True)$ (MeV)

Sorry, the color definitions of CCQE are different.

T2K Systematic Errors in $\sin^2 2\Theta_{23}$, Δm^2_{23}

- Statistics in Phase I
- Systematics for 2.5° beam at the bottom: need better than 10% measurement of nQE!

Measuring v_{μ} Disappearance in NOvA

Totally active scintillator detector: Can identify QE's very well (threshold much lower for p,π than water Cerenkov)

- Assuming Quasi-elastic events only, the statistical error is already at the 0.012 level for $\sin^2 2\Theta_{23}$, and .08-.10 for Δm_{23}^2
- Changing "energy loss mechanisms" in QE events gives systematic differences of .01 to .03 in error in sin2 $2\Theta_{23}$, but only .01-.04 in $\Delta m2$

MINOS Detector

- 8m octagon steel & scintillator calorimeter
 - > Sampling every 2.54 cm
 - > 4cm wide strips of scintillator
 - > 5.4 kton total mass

Primary Goal: v_{μ} CC event reconstruction, kinetic energy measurement

Events at MINOS

Measuring P("E_v") at MINOS

2.5 x 10²⁰ Protons on target in 2005

Shown: plots for 7.4 and 25×10^{20}

NC backgrounds:

>important for seeing the wiggle

>not important for precise ∆m² measurement

New Realm of Precision: details count!

Neutrino Energy Calibration

- Visible Energy in Calorimeter is NOT ν energy!
 - $\triangleright \pi$ absorption, rescattering
 - > final state rest mass

D. Ashery et al, PRC 23,1993

Nuclear Effects in neutrinos:
Pion Intranuclear Rescattering:
Comparison of Ne to D,
R. Merenyi et al, PRD **45**, 1992
(low statistics Bubble Chamber measurements, two separate beams)

Nuclear Effects Studied in Charged Lepton Scattering, from Deuterium to Lead, at High energies, but nuclear corrections may be different between e/μ and ν scattering

How Nuclear Effects enter Δm² Analyses

Measurement of Δm^2 (e.g.MINOS)

 Need to understand the relationship between the incoming neutrino energy and the visible energy in the detector

Simple Analysis: shift the near to far prediction by these two Effects, after muon energy cut:

(rise due to muon energy cut of 0.75GeV)

What is needed to improve the error on Δm_{23}^2

Ideally, want to measure cross sections on several different nuclei:

- ➤ Large span on target A
- Final state reconstruction
- ➤ Good vertexing so you know event-byevent what target nuclei is

MINERvA design: (before proton driver): pion absorption and rescattering measured on steel, carbon, lead...

At Proton Driver Era:

Will want to still use MINOS to see ν_{μ} disappearance in antineutrinos...

Are nuclear effects the same there?

MINOS analysis assumes these systematic uncertainties:

- ▶2% overall flux uncertainty
- ➤MIPP bin-to-bin uncertainty
- >2% overall CC efficiency plus (2-E,)*1.5% below 2GeV

And assumes systematic errors decrease with statistics

Conclusions

- \triangleright v_e appearance needs:
 - Coherent pion cross sections
 - Robust predictions from CC process to NC process
 - High y v_{μ} cross sections
 - If signal is seen, we really need QE and Resonance cross sections better than we have now
- \triangleright High Statistics v_u disappearance needs:
 - Measurements of Nuclear effects in neutrinos
 - "neutrino energy calibration"
 - Ratio of Quasi-elastic to non-Quasi-elastic cross sections